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Abstract

The present paper concerns the numerical treatment of fretting problems using a _nite element analysis[
The governing equations resulting from a formal _nite element discretization of an elastic body with a
potential contact surface are considered in a quasi!static setting[ The constitutive equations of the potential
contact surface are Signorini|s contact conditions\ Coulomb|s law of friction and Archard|s law of wear[
Using a backward Euler time discretization and an approach based on projections\ the governing equations
are written as an augmented Lagrangian formulation which is implemented and solved using a Newton
algorithm for three!dimensional fretting problems of didactic nature[ Details concerning the implementation
are provided[ Þ 0888 Elsevier Science Ltd[ All rights reserved[

0[ Introduction

Fretting is a wear phenomenon occurring in contacts of machine elements subjected to oscillatory
movements with small amplitudes[ In steel assemblies\ this phenomenon can be identi_ed as oxide
debris "a−Fe1O2# called {cocoa|\ {red!mud| or {blood|\ resulting from the particle detachment from
the contact surfaces[ This might lead to loss of clearance or cause jamming in assemblies such as
splines\ shrink!_ts\ bolted joints etc[\ see e[g[ the reviews by Hurricks "0869#\ Waterhouse "0873#
and Vincent et al[ "0881#[ In severe cases\ fretting might cause initial cracks leading to fretting
fatigue failures in machine components\ see e[g[ the reviews by Waterhouse "0881# and Hills "0883#[

Calculation of contact stresses in fretting is usually performed by applying a frictional analysis[
Unfortunately\ such an analysis does not include possible changes in the contact geometry caused
by the particle detachment during the wear process[ Since the distribution of contact stresses is
very sensitive to the shape of the contact geometry\ it might be of importance\ especially when
analysing fretting problems\ to incorporate the material removal in the frictional analysis[ This is
done in the present paper ^ the change in contact geometry due to wear is included in the frictional
analysis by de_ning a certain internal state variable[ By using this internal variable approach\ an
elastic body with a potential contact surface possessing constitutive properties that describe contact\
friction and wear is considered[ For this system\ quasi!static fretting problems of didactic nature
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are solved using a Newton algorithm[ The structure of the algorithm is _tted for implementation
in commercial _nite element codes[

The constitutive equations of the potential contact surface are represented by a coupling of
Signorini|s contact conditions\ Coulomb|s law of friction and Archard|s law of wear[ The coupling
of these tribological laws was given as a generalized standard material within a framework of
continuum thermodynamics in Stro�mberg et al[ "0885#[ In Stro�mberg "0886#\ inspired by Alart
and Curnier "0880# and Klarbring "0881#\ this generalized standard material was rewritten in the
form of an augmented Lagrangian formulation\ which was solved for two!dimensional fretting
problems using a Newton algorithm suggested by Pang "0889#[ In this work an improved version\
from a numerical point of view\ of this augmented Lagrangian formulation is considered for three!
dimensional fretting problems[ Due to the strong non!linearities of the tribological laws\ the
augmented Lagrangian formulation is not di}erentiable in the classical sense[ However\ it is
Lipschitz continuous and directionally di}erentiable\ which makes Pang|s Newton algorithm for
solving Bouligand di}erentiable equation systems applicable[ Numerically\ it is important to
investigate the algorithm for three!dimensional problems and not only for the two!dimensional
case[ For instance\ the directional derivative of the augmented Lagrangian formulation appearing
in the algorithm simpli_es a lot in two!dimensions compared to the three!dimensional case[
Recently\ augmented Lagrangian techniques for solving frictional contact problems were discussed
by Wriggers "0885#[

The essential idea of the fretting model utilized in this paper is to include wear in frictional
contact models by de_ning a certain internal state variable for the contact interface "Stro�mberg et
al[\ 0885#[ This internal state variable measures the wear developed in the contact interface as an
increase in the gap between the bodies[ The evolution law for the internal state variable is taken
to be Archard|s wear law "Archard\ 0842#\ i[e[ the increase in wear gap is proportional to the
contact pressure and the amount of sliding between the bodies[ This constitutive assumption is in
agreement with e[g[ Stowers and Rabinowicz "0862#\ who suggest that Archard|s law of wear can
be used in order to predict the volume worn away in fretting[ Thus\ compared to pure frictional
contact models\ this internal state variable induces an additional coupling between contact and
friction owing to the fact that the contact geometry is changed when slip is developed[ Recently\
Faanes "0885# discussed how fretting surfaces might be modi_ed by wear in order to improve the
analysis of fretting fatigue cracks[

The Newton method discussed above is implemented and used to solve three!dimensional fretting
problems of didactic nature[ In particular\ a punch subjected to a cyclic indentation into an elastic
half!plane and a unilaterally constrained elastic block subjected to cyclic loads are considered[ In
contrast to the solutions of these problems using a pure frictional contact model\ the contact
pressures do not reach a steady state after the _rst cycle[ But instead one gets\ using this fretting
model\ an evolution in the contact pressures during the cycles depending on increases in the wear
gap which are governed by Archard|s wear law[ On the contrary to intuition\ depending on the
stick!slip conditions for the particular problems considered\ the wear gaps increase not in such a
manner that uniform contact pressures are obtained ^ instead large contact stresses are developed
in the sticking area "no sliding implies no wear\ i[e[ the wear gap is zero here# and zero contact
stresses are obtained in the slipping area after many cycles "sliding implies wear\ i[e[ the wear gap
is greater than zero here#[ In addition\ large gradients of the contact stresses are produced in the
intermediate location of stick and slip[ This stress distribution is in major contrast to the uniform
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distribution obtained for fretting with global sliding conditions[ For two!dimensional problems\
the contact tractions dependency on the removal of material in fretting was considered by Johans!
son "0881# and Stro�mberg "0886#[

The non!uniform contact stresses\ which are obtained in general for fretting problems with stick!
slip conditions\ might explain why initial cracks in fretting fatigue sometimes are observed in
regions between stick and slip\ see e[g[ Waterhouse "0870# and the review by Mutoh "0884#[ A
combination of large values and large gradients of the contact tractions might cause damages in
the bulk material near the contact surface\ which in turn might lead to initial cracks[ In conclusion\
concerning the fatigue life\ fretting with stick!slip conditions might be a much more severe mech!
anism than fretting with global sliding conditions[ Similar observations have been found exper!
imentally by Vingsbo and So�derberg "0877#[

The contents of this study is as follows ] in Section 1 the quasi!static fretting problem is given[
The governing equations de_ning the problem were derived from a continuum thermodynamical
model using a formal space discretization in Stro�mberg "0886#[ In Section 2 the main steps of the
derivation of the augmented Lagrangian formulation from the governing equations are brie~y
presented[ The Newton algorithm used for solving this system is also given[ In Section 3 details
about the numerical implementation of the algorithm are provided[ In Section 4 the problems
discussed above are considered as well as a comparison of three di}erent punches pressed into an
elastic half!plane showing the sensitivity in the contact pressure with respect to changes in the
contact geometry[ Finally\ in Section 5\ concluding remarks are given[

1[ The quasi!static fretting problem

Let us consider an elastic body for which a potential contact surface is unilaterally constrained
by a rigid foundation[ The potential contact surface is treated as a material surface which possesses
constitutive properties that describe contact\ friction and wear[ Besides the well!known internal
state variable used in friction problems for measuring slip "see e[g[ Michalowski and Mro�z\ 0867 ^
Curnier\ 0873 ^ Klarbring\ 0889#\ an additional internal state variable is de_ned for this material
surface which measures the wear gap at the contact interface[ Within the framework of this internal
state variable approach "see Stro�mberg et al[\ 0885#\ the fretting laws are given by Signorini|s
contact conditions\ Coulomb|s law of friction and Archard|s law of wear[ Concerning the _rst
formulation of a contact interface within the framework of continuum thermodynamics\ at least
to my knowledge\ see Fre�mond "0876#[

Following Stro�mberg "0886#\ the above system is discretized in space[ The total number of
kinematic freedoms is hu and the number of potential contact nodes is hc[ The displacement vector
is represented by u $ Rhu[ For each contact node i $ "0\ [ [ [ \ hc#\ three unit directions are de_ned ]
one normal direction and two tangential directions with respect to the support[ Using these unit
directions\ it is possible to express the normal displacement and the tangential displacements at
each contact node in the following way ]

uin � Cinu $ R\ uit � Citu $ R\ uio � Ciou $ R\

where subscripts n\ t and o stand for normal\ tangential and orthogonal direction\ respectively\
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and Cin\ Cit and Cio are the ith rows of the transformation matrices Cn $ Rhc×hu\ Ct $ Rhc×hu and
Co $ Rhc×hu\ respectively[

After a formal discretization\ the equilibrium equations can be written as

Ku � F−CT
n Pn−CT

t Pt−CT
o Po\ "0#

where K $ Rhu×hu is the sti}ness matrix\ F $ Rhu is the external nodal force vector\ Pn $ Rhc is the
normal contact force vector\ and Pt $ Rhc and Po $ Rhc are the tangential contact forces[ In this
work\ it is assumed that the sti}ness matrix K is positive semi!de_nite\ i[e[ the body is not necessarily
_xed at the boundary such that rigid body motions are prevented[

In order to account for wear in the normal contact law\ Signorini|s unilaterally contact conditions
are extended in the following manner for i $ "0\ [ [ [ \ hc# "Stro�mberg et al[\ 0885# ]

Pin $ R¦ ] "uin−wi−`i#"P?in−Pin# ¾ 9 [P?in $ R¦\ "1#

where wi is the nodal value of the internal state variable measuring the wear gap\ `i is the
initial gap between the contact node and the support\ R¦ is the non!negative orthant of R "i[e[
R¦ � "x $ R ] x − 9## and P?in stands for a {trial| contact force[

For each contact node\ Coulomb|s law of friction is given as the following well!known maximum
dissipation principle ] _nd "Pit\ Pio# $ F"Pin# such that

u¾it"P?it−Pit#¦u¾io"P?io−Pio# ¾ 9 ["P?it\ P?io# $ F"Pin#\ "2#

where

F"Pin# � ""Pit\ Pio# ] z"Pit#1¦"Pio#1 ¾ m"Pin#¦#

is Coulomb|s set of admissible tangential contact forces[ Here\ it is assumed that the friction
coe.cient m is constant over the potential contact surface[ Furthermore\ a superimposed dot stands
for the time derivative and "x#¦ � max"9\ x#\ where the {max|!operator denotes maximum of the
two arguments[ By using this latter function in F"Pin#\ one obtains a set of admissible tangential
contact forces which is de_ned not only for Pin − 9 but also for Pin ³ 9[

Finally\ the evolution of the internal state variable wi is governed by Archard|s law of wear[
That is\ assuming that k is a constant wear coe.cient\

w¾ i �
k
Ii

Pinz"u¾it#1¦"u¾io#1\ i $ "0\ [ [ [ \ hc#\ "3#

where Ii is a weighting factor depending on what quadrature rule has been used in the space
discretization of the contact surface[ This weighting factor appears naturally in Archard|s wear
law when the discretization is carried out\ see Stro�mberg "0886#[ If Archard|s wear coe.cient ka

and the penetration hardness ps are de_ned\ then the following relationship holds ]

k �
ka

2ps

[

The fretting problem has now been stated in eqns "0#Ð"3#[ That is\ for a given load history F"t#\
t $ ð9\ T Ł\ on a time interval ð9\ T Ł\ the following quasi!static problem is to be solved ] _nd tŁ u"t#\



N[ Stro�mber`:International Journal of Solids and Structures 25 "0888# 1964Ð1989 1968

tŁ Pn"t#\ tŁ Pt"t# and tŁ Po"t# such that the functions u"t#\ Pn"t# and Po"t# satisfy conditions
"0#Ð"3#[

2[ The Newton algorithm

In order to solve the quasi!static problem stated above\ we start to approximate the time rates
appearing in "2# and "3#\ at a time tk¦0\ by the following implicit rule ]

"u¾it"tk¦0#\ u¾io"tk¦0## ¼ 0
uit"tk¦0#−uit"tk#

tk¦0−tk
\
uio"tk¦0#−uio"tk#

tk¦0−tk 1\ "4#

w¾ i"tk¦0# ¼
wi"tk¦0#−wi"tk#

tk¦0−tk
\ "5#

i[e[ a backward Euler time discretization is applied[ Using "4# and "5#\ and de_ning
"u¹it\ u¹io# �"uit"tk¦0#−uit"tk#\ uio"tk¦0#−uio"tk##\ one can approximate "3# by

wi"tk¦0# ¼ w¹ i¦
k
Ii

Pin"tk¦0#z"u¹it#1¦"u¹io#1\ "6#

where w¹ i � wi"tk#[
Next\ multiplying "1# by any ri × 9\ and adding and subtracting this by Pin\ it is recognised that

Pin is the projection of "Pin¦ri"uin−wi−`i## onto R¦[ In a similar way\ it can be veri_ed from "2#\
on using "4#\ that "Pit\ Pio# can be expressed as the projection of "Pit¦riu¹it\ Pio¦riu¹io# onto F"Pin#
"concerning the approach of projections\ see De Saxce and Feng\ 0880 and Klarbring\ 0881#[

Using these projections together with "0# and "6#\ and de_ning y �"u\ Pn\ Pt\ Po#\ the fretting
problem can now be treated by solving the following system of equations for each time increment ]

H"y# �

F

G

G

G

G

f

Ku−F¦CT
n Pn¦CT

t Pt¦CT
o P9

"−Pin¦Pin"y##i�hc
i�0

0−0
Pit

Pio1¦"Pito"y##T 1
i�hc

i�0

J

G

G

G

G

j

� 9\ "7#

where\ on using the de_nition "Pit"ri#\ Pio"ri## �"Pit¦riu¹it\ Pio¦riu¹io#\

Pin"y# � 0Pin¦ri 0uin−w¹ i−
k
Ii

Pinz"u¹it#1¦"u¹io#1−`i11¦

\ "8#

Pito"y# � 8
"Pit"ri#\ Pio"ri## if "Pit"ri#\ Pio"ri## $ F"Pin#

m"Pin#¦"Pit"ri#\ Pio"ri##

z"Pit"ri##1¦"Pio"ri##1
otherwise

"09#

are the explicit expressions of the projections of "Pin¦ri"uin−wi−`i## onto R¦ and "Pit"ri#\ Pio"ri##
onto F"Pin#\ respectively[ Notice also here that the approximation of Archard|s law of wear given
in "6# has been inserted into "8#[ The functions given in "8# and "09# are Lipschitz continuous and
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directionally di}erentiable\ see Stro�mberg "0886#[ Consequently\ this is also true for H"y# in "7#[
The Lipschitz continuity and the directionally di}erentiability imply that H"y# is Bouligand
di}erentiable[ For solving such a system of equations\ Pang "0889# suggested the Newton algorithm
presented below[

A more detailed derivation of the augmented Lagrangian system in "7# and the projections in
"8# and "09# can be found in Stro�mberg "0886#\ where an almost similar augmented Lagrangian
system was solved for two!dimensional fretting problems using Pang|s Newton algorithm[ The
di}erence between this augmented Lagrangian system and the one suggested previously concerns
the equilibrium equations in "7#[ In the previous work "Stro�mberg\ 0886#\ inspired by Alart and
Curnier "0880#\ the contact forces appearing in the equilibrium equations were replaced by the
projections in "8# and "09#[ However\ the formulation used in "7# is a numerical improvement since
the equilibrium equations remain linear in the contact forces[ This is of advantage when the search
direction is found in Pang|s algorithm\ see "00# and also Section 3[1[

So far\ it has been numerically proven\ for the two!dimensional case\ that Pang|s algorithm
works well for solving augmented Lagrangian formulations of friction and fretting problems[ An
extensive study of this Newton algorithm for two!dimensional friction problems can be found in
Christensen et al[ "0886#\ where also friction problems were solved using an interior point method ^
it was found that the Newton method is superior both in speed and robustness[ In this paper\ the
augmented Lagrangian formulation in "7# is solved for three!dimensional fretting problems using
Pang|s algorithm\ i[e[

Al`orithm ] Let b\ g and o be given scalars with b $"9\ 0#\ g $"9\ 0:1# and o small[ Repeat the
following steps for each time increment k¦0 ]

"9# Let y9 be given from the previous time step k and set l � 9[
"0# Find a search direction z �"zd\ zn\ zt\ zo# such that

H"yl#¦H?"yl ^ z# � 9\ "00#

where H?"yl ^ z# is the directional derivative[
"1# Let al � bml\ where ml is the _rst non!negative integer m for which the following decrease

criterion holds ]

`"yl¦bmz# ¾"0−1gbm#`"yl#\ `"y# � 0
1
HT"y#H"y#[

"2# Set yl¦0 � yl¦alz[
"3# If `"yl¦0# ¾ o\ then terminate with yl¦0 as an approximate zero of H"y#[ Otherwise\ replace l

by l¦0 and return to step 0[

After convergence in each time step is achieved\ the internal state variables uit\ uio and wi are
updated[

The algorithm|s rate of convergence cannot be established\ nor can it be shown that the stepsize
al eventually will become 0[ However\ if H"y# is di}erentiable in the classical sense\ i[e[ Fre�chet
di}erentiable\ at the solution point\ then it is possible to show quadratic convergence[ Furthermore\
the line!search in step two of the algorithm\ an Armijo procedure\ makes the algorithm globally
convergent[ Concerning convergence results of the algorithm see Pang "0889# and Christensen et
al[ "0886#[ A practical drawback of the algorithm is the non!linearity of H?"y ^ z# in z\ which might
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limit the e}ectiveness of _nding search directions\ at least for large scale problems[ However\ the
absence of linearity is overcome by introducing an appropriate substitution of H?"y ^ z# such that
"00# results in a system of linear equations\ see Section 3[0[

3[ Implementation

The Newton method presented is implemented in Fortran 66 for the three!dimensional case[
Two di}erent types of examples\ given in Section 4\ are solved on an HP 8999 Model 601 work
station with 59 MHz clock speed using double precision arithmetic[ In this section important
information concerning the implementation of the algorithm is provided[

3[0[ Substitution of H?"y ^ z#

The essential task of the algorithm is to _nd the search direction\ i[e[ solving "00# in step one of
the algorithm which generally is a system of non!linear equations[ In order to get an e.cient code\
this task is treated by introducing an appropriate substitution of H?"y ^ z# such that "00# results in
a system of linear equations which still yield an e}ective search direction[

The non!linearity of H?"y ^ z# in z depends on the non!di}erentiability of the functions given in
"8# and "09#[ However\ these functions are only non!di}erentiable at states on certain boundaries ^
otherwise they are di}erentiable[ The substitution of H?"y ^ z# concerns states on such boundaries
of non!di}erentiability[ In order to deal with the substitution of H?"y ^ z# on these boundaries\ the
following index sets are de_ned ]

I³ � 6i ] Pin¦ri 0uin−w¹ i−
k
Ii

Pinz"u¹it#1¦"u¹io#1−`i1³ 97\

I� � 6i ] Pin¦ri 0uin−w¹ i−
k
Ii

Pinz"u¹it#1¦"u¹io#1−`i1� 97\

I× � 6i ] Pin¦ri 0uin−w¹ i−
k
Ii

Pinz"u¹it#1¦"u¹io#1−`i1× 97\
J � "i ] Pin ³ 9#\

J³ � "i ] Pin × 9\ z"Pit"ri##1¦"Pio"ri##1 ³ mPin#\

J� � "i ] Pin × 9\ z"Pit"ri##1¦"Pio"ri##1 � mPin#\

J× � "i ] Pin × 9\ z"Pit"ri##1¦"Pio"ri##1 × mPin#\

K¦ � "i ] Pin � 9 ³ z"Pit"ri##1¦"Pio"ri##1#\

K9 � "i ] Pin � Pit"ri# � Pio"ri# � 9#\

W¦ � "i ] z"u¹it#1¦"u¹io#1 × 9#\

W9 � "i ] z"u¹it#1¦"u¹io#1 � 9#[
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That is\ although the directional derivatives P?in"y ^ z# and P?ito"y ^ z# always exist\ Pin"y# is not
di}erentiable for i $ I� *"I× + W9# and Pito"y# is not di}erentiable for i $ J� * K¦ * K9[
Consequently\ H"y# is not di}erentiable when the index set L � I� * J� * K¦ *
K9 *"I× + W9# is non!empty ^ otherwise H?"y ^ z# � 9H"y#z[ Furthermore\ if i ( L\ then
P?in"y ^ z# � 9Pin"y#z and P?ito"y ^ z# � 9Pito"y#z[ Still\ 9Pin"y# and 9Pito"y# depend on the state y[
This is dealt with the remaining sets given above\ apart from the sets de_ning L[

Using this approach of index sets\ the following substitution is introduced ]

H?"y ^ z# ¼ J"y#z �

F

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

f

Kzd¦CT
n zn¦CT

t zt¦CT
o zo

"−zin#i$I³*I�

"riCinzd#i$I×+W9

0ri 0Cinzd−
k>u>i

Ii 0zin¦
Pin"u¹itCitzd¦u¹ioCiozd#

>u>1
i 111i$I×+W¦

0
−zit

−zio1i$J*K¦*K9

0
riCitzd

riCiozd1i$J³*J�

0−0
zit

zio1¦
mzin"Pit"ri#\Pio"ri##T

z"Pit"ri##1¦"Pio"ri##1
¦Ri 0

zit¦riCitzd

zio¦riCiozd11i$J×

J

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

j

\ "01#

where >u>i � z"u¹it#1¦"u¹io#1 and

Ri �
mPin

""Pit"ri##1¦"Pio"ri##1#2:1 0
"Pio"ri##1 −Pit"ri#Pio"ri#

−Pit"ri#Pio"ri# "Pit"ri##1 1[
Thus\ the substitution concerns i $ L ^ otherwise exact equality holds in the above expression[ The
correct expression of the directional derivative H?"y ^ z# for the pure frictional case\ i[e[ k � 9 in
"01#\ can be found in Christensen et al[ "0886#[

The basic idea with the above substitution is that the index set L is numerically almost
always empty and therefore the above substitution is su.cient to get a vigorous search direction[
Accordingly\ "00# reduces to

z � −"J"yl##−0H"yl#\ "02#

where the Jacobian J"yl# is de_ned by "01#[ In particular\ if L is empty\ then J"yl# � 9H"yl#[ In
conclusion\ by introducing the substitution given in "01#\ "00# becomes a system of linear equations
instead of a system of non!linear equations[

3[1[ Linear equation solvin`

When implementing the algorithm\ assuming that J"yl# always is non!singular\ eqn "02# is solved
by a lower and upper factorization\ i[e[
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J"yl# � L"yl#U"yl#\ "03#

where L"yl# is a lower triangular matrix and U"yl# is an upper triangular matrix[
Generally\ this factorization step is performed with a pivoting technique using a package from

Netlib[0 In particular\ if the sti}ness matrix K is positive de_nite\ then it is utilized that some parts
of J"yl# are constant[ That is\ letting zc �"zn\ zt\ zo#\ "03# is decomposed in the following manner ]

$
Jdd Jdc

Jcd"yl# Jcc"yl#%� $
Ldd 9

Lcd"yl# Lcc"yl#% $
Udd Udc

9 Ucc"yl#%\
where Jdd and Jdc are constant parts of J"yl# belonging to the equilibrium equations in "7#\ and
Jcd"yl# and Jcc"yl# are parts depending on the state yl from the tribological laws given in "8# and
"09#[ Thus\ in the initialization of the algorithm\ Ldd\ Udd and Udc are determined from Jdd � LddUdd

and Jdc � LddUdc[ Then\ in each iteration\ "03# is solved by using the following steps ]

Jcd"yl# � Lcd"yl#Udd and Jcc"yl# � Lcd"yl#Udc¦Lcc"yl#Ucc"yl#[

In addition\ in the initialization step of the algorithm\ the equilibrium equations are statically
condensed to the contact nodes using a Cholesky decomposition\ such that\ assuming that no
contact nodes are partially constrained\ Jdd\ Jdc\ Jcd"yl#\ Jcc"yl# $ R2hc×2hc[ The above scheme is
owing to the improved augmented Lagrangian formulation given in this paper[ Previously\ in
Stro�mberg "0886#\ Jdd and Jdc were not constant but depended instead on the tribological laws
given in "8# and "09#[ Finally\ another improvement for solving "02# can be achieved by utilizing
the structure of "01# when i $ I³ * I� and:or i $ J * K¦ * K9[

3[2[ Miscellaneous

Parameters entered into the line!search procedure have been set to b � 9[8 and g � 9[0[ The
performance of the line search procedure turns out well with this setting[ However\ it is of major
importance to de_ne an additional upper bound on m such that the line search is aborted if bm

gets numerically too small[ Otherwise\ it is likely that the algorithm will stall[ In the implementation\
this upper bound is set to 11\ i[e[ bm never becomes less than 9[0[ Concerning the termination
check\ o is set equal to 09−1[ The remaining parameters to be set in the algorithm are the penalty
terms ri appearing in the tribological laws given by "8# and "09#[ In this work\ each ri is set equal
to 0901Ii[ Still\ ri can be chosen in a range between 098Ii−0902Ii without any major di}erences in
performance of the algorithm[ However\ if ri is set to a lower value\ then convergence di.culties
may appear[ On the contrary\ if ri is set larger\ then the algorithm might be unstable[

4[ Numerical examples

Two di}erent types of three!dimensional problems are considered[ First rigid punches with
di}erent shapes are pressed into an elastic half!plane and then a unilaterally constrained elastic

0 http ]::www[netlib[org:ieeecss:cascade:dgefam[f and :dgeslm[f



N[ Stro�mber`:International Journal of Solids and Structures 25 "0888# 1964Ð19891973

block is subjected to cyclic loads[ In each problem\ the elastic structure is approximated by trilinear
hexahedral elements "see e[g[ Hughes\ 0876# with Young|s modulus and Poisson|s ratio taken to
be 109 GPa and 9[2\ respectively[ The potential contact surface is\ in all examples\ approximated
by 099 contact elements using the trapezoidal integration rule in such a manner that the integration
points coincide with the nodal displacement points of the contact surface[ It is a matter of course
to choose other integration rules such that the integration points not necessary will coincide with
the nodal displacements[ A study of di}erent integration rules for the contact surface can be found
in Johansson "0875#[

4[0[ Punch problems

A rigid punch with three di}erent geometries is pressed into an elastic half!plane[ The symmetry
is utilized such that only a quarter of the punch and the half!plane is modelled[ The elastic half!
plane is approximated by a _nite structure according to Fig[ 0[ In order to get a good approximation
of an elastic half!plane\ the _nite structure is taken su.ciently large with respect to the potential
contact surface[ That is\ the dimension of the _nite structure is 0[9×0[9×0[9 m2 and the area of
the potential contact surface is 9[0×9[0 m1[ The _nite structure is modelled by 19×19×19 _nite
elements and for the potential contact surface 09×09 elements are used[ The friction coe.cient is
set to m � 9[2 and the wear coe.cient is taken to be k � 0[9 = 09−00 Pa−0[ In steel assemblies\ this
is typical wear constant for adhesive wear which normally is the most dominating wear mechanism
in fretting situations "see e[g[ Rabinowicz\ 0854#[

The di}erent punch geometries considered are given by the following initial gaps ]
` � 4[9 = 09−2"o1¦t1# m\ ` � 9[64"o1¦t1#1 m and ` � 9[64"o3¦t3# m\ where the tangential coor!

Fig[ 0[ The _nite element approximation of an elastic half!plane\ showing the mesh and the symmetry used[ The potential
contact surface\ approximated by 099 contact elements\ is zoomed in[
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Fig[ 1[ The punch geometry\ the contact pressure and the wear gap for three di}erent punches pressed into an elastic
half!plane[

dinates o and t are de_ned in Fig[ 0[ These geometries are compared in Fig[ 1[ The _rst punch
geometry represents a Hertz punch with a radius of 099 m\ while the two other punch geometries
are only slight modi_cations of this one[ In Fig[ 1\ the contact pressure and the wear gap are
plotted after each punch is indented 9[96 mm[ Each indentation is treated using 39 time increments[
A comparison indeed emphasizes the sensitivity in the contact pressure with respect to changes in
the structure\ boundary conditions and initial conditions[ It is obvious how small changes from
the _rst punch geometry strongly a}ect the shape of the contact pressure[ Furthermore\ it is also
obvious that the wear gap strongly depends on the punch geometry "look at the scales on the axis#[
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This sensitivity depends not only on the di}erences obtained in the contact pressure but also on
the di}erences in the amount of slip\ as explained by Archard|s wear law in "3#[ It is important to
notice that the sliding has appeared solely because of the 9[96 mm indentation and not because of
any prescribed global tangential movement\ i[e[ the amount of slip is the measured micro!slip of
Coulomb depending on the elasticity of the half!plane[ In conclusion\ when studying a fretting
phenomenon it is of importance to de_ne the geometry\ the boundary conditions and the initial
conditions of the problem carefully\ and not only to choose the friction and wear coe.cients with
great precision[

Thus\ from the discussion above\ it is clear that in a fretting process the evolution in wear gap
might change the surface geometry so that large changes in the contact stresses as well as in the
amount of slip are induced\ which in turn in~uence the wear rate[ This fact is illustrated in Fig[ 2\
where the third punch\ i[e[ ` � 9[64"o3¦t3# m\ is pressed cyclic into the elastic half!plane[ The
punch is repeatedly indented 9[96 mm during 499 cycles using 19 time increments for each cycle[
The friction coe.cient is still m � 9[2 but the coe.cient of wear is taken to be k � 0[9 = 09−7 Pa−0[
After 499 cycles\ the solution reaches a steady state[ In the slipping region\ i[e[ where wear is
developed\ the contact pressure has turned toward a value of zero[ On the contrary\ a hump in the
contact pressure has been developed in the sticking area with almost a four times greater maximum
value than the maximum after the _rst cycle[ The non!uniform distribution of the contact pressure
depends on the stick!slip conditions[

Fig[ 2[ The evolution in contact pressure and wear gap during repeated indentations of the punch represented by
` � 9[64"o3¦t3# m[
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The wear coe.cient used in the above example is unrealistically large from a physical point of
view[ However\ this wear coe.cient is used in order to numerically accelerate the fretting process[
One might consider the result in Fig[ 2 as a solution of a similar problem during 499\999 cycles with
k � 0[9 = 09−00 Pa−0[ This with a small error compared to the uncertainties in the experimentally
determined value of the wear coe.cient[ In such a manner\ it is possible to solve real fretting
problems within a reasonable time[ The size of the error induced by decreasing the number of
cycles and simultaneously increasing the wear coe.cient was investigated in more detail by
Johansson "0881# and Stro�mberg "0886#[

4[1[ Elastic block problem

The structures involved in real fretting problems rarely consist of elastic half!planes but rather
of structures with _nite extensions[ Of course\ using the elastic half!plane assumption is a _rst!rate
approach for many problems\ but not generally[ This justi_es the use of a _nite element analysis
for solving fretting problems[

A _nite elastic block\ with dimensions 9[1×9[1×9[0 m2\ is considered in Fig[ 3[ It is unilaterally
constrained by a rigid foundation at the bottom and subjected to surface loads Q0 and Q1[ The
surface load Q0\ at the top of the block\ is held _xed at 099 MPa and the surface loads Q1\ applied
at opposite sides of the block\ are alternating between 2099 MPa[ Due to the symmetry only a
quarter of this problem is considered\ i[e[ a cube of 9[0×9[0×9[0 m2[ Thus\ rigid body motion in
the tangential directions are excluded[ However\ the body is not _xed perpendicular with respect
to these tangential directions "only unilaterally constrained#[ Consequently\ the resulting sti}ness
matrix K of the problem is positive semi!de_nite\ implying that the scheme developed in Section
3[1 is not applicable[ Instead "02# is solved straightforwardly by using the package from Netlib[

The above problem has been solved for 299 cycles using eight time increments for each cycle[
The quarter of the structure\ i[e[ the cube which is considered\ is modelled using 09×09×09
elements[ The friction coe.cient is m � 9[3 and the wear coe.cient is k � 0[9 = 09−09 Pa−0[ The
contact pressure and the wear gap are plotted in Fig[ 4 when Q1 is passing −099 MPa after 0\ 099\
199 and 299 cycles\ respectively[ After 299 cycles "or 2999 cycles with k � 0[9 = 09−00 Pa−0#\ the
solution has reached a steady state[ That is\ in the sticking area a plateau in the contact pressure
has been developed which drops to a zero value in the slipping zone[ Furthermore\ the steady state

Fig[ 3[ An elastic block unilaterally constrained to a rigid support and subjected to surface loads Q0 and Q1[



N[ Stro�mber`:International Journal of Solids and Structures 25 "0888# 1964Ð19891977

Fig[ 4[ The evolution in contact pressure and wear gap for the elastic block problem[ Due to the symmetry\ only a
quarter of the problem is considered[ The result is plotted when Q1 is passing −099 MPa[ The tangential coordinates o
and t are de_ned in Fig[ 3[
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implies that the wear rate is almost zero[ An important consequence of this is that the dissipation
is also almost zero[ This is in contrast to the result obtained from a pure frictional analysis\ i[e[
when the wear coe.cient equals zero in our fretting model[ For such an analysis\ the dissipation
would be constant for each cycle[ This fact may be taken into consideration when designing
frictional dampers "see e[g[ Wang and Paul\ 0882#[

Finally\ some execution statistics for the examples considered are provided[ For the punch
problems\ the computing time for each time increment is about one minute on average ^ _ve
Newton iterations per time increment are needed and three line searches per Newton iteration are
performed[ The same statistics are higher for the elastic block problem\ probably depending on
the fact that the sti}ness matrix K is positive semi!de_nite for this problem[ Here\ the computing
time for each time increment is about three minutes on average ^ in general ten Newton iterations
per time increment are needed and 02 line searches per Newton iteration are performed[

5[ Concluding remarks

In the present work a Newton algorithm for solving fretting problems has been developed and
investigated[ The algorithm has been implemented in Fortran 66 on a work station and two
di}erent types of three!dimensional fretting problems have been solved using the method[ Details
concerning the implementation are provided in the paper[

In a previous work by Christensen et al[ "0886#\ it was shown that the developed Newton
algorithm runs properly for two!dimensional friction problems[ In this work it has been found
that the algorithm also is attractive\ both in robustness and speed\ for three!dimensional fretting
problems "consequently this is also true for three!dimensional friction problems#[ In addition\ the
structure of the algorithm is _tted for implementation in commercial _nite element codes[

So far\ the wear model adopted in this paper has been utilized to study the contact tractions
dependency on the removal of material from fretting surfaces[ Three!dimensional fretting problems
with stick!slip conditions have been investigated[ On the contrary to fretting problems with global
sliding conditions\ uniform contact pressures are not obtained for these problems[ Instead the
contact stresses evolve to strongly non!uniform _elds[ Such non!uniform contact stresses with
large values and large gradients might cause crack initiation\ leading to fretting fatigue failures[
Thus\ concerning the _eld of fretting fatigue\ fretting with stick!slip conditions might be a much
more severe mechanism than fretting with global sliding conditions[ Therefore\ for future plans\ it
would be of interest to extend the elastic properties of this wear model with an appropriate non!
linear material model such as the Dang Van criterion "see Petiot et al[\ 0884# in order to study
fretting fatigue[
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